TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS] fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS]fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
A correlação quântica é a mudança esperada nas características físicas à medida que um sistema quântico passa por um site de interação. Em outras palavras, o termo correlação quântica passou a significar o valor esperado do produto dos resultados nos dois lados.[1] Ela (por exemplo, emaranhamento[2][3] e discórdia[4][5][6]) é uma característica fundamental da mecânica quântica, que é conhecida por estar no centro de várias aplicações em potencial, como codificação superdensa, teletransporte quântico e criptografia quântica.[7]
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
A correlação quântica é a mudança esperada nas características físicas à medida que um sistema quântico passa por um site de interação. Em outras palavras, o termo correlação quântica passou a significar o valor esperado do produto dos resultados nos dois lados.[1] Ela (por exemplo, emaranhamento[2][3] e discórdia[4][5][6]) é uma característica fundamental da mecânica quântica, que é conhecida por estar no centro de várias aplicações em potencial, como codificação superdensa, teletransporte quântico e criptografia quântica.[7]
Testes de Bell
No artigo de John Bell, de 1964, que inspirou os testes de Bell, supunha-se que os resultados A e B pudessem assumir apenas um dos dois valores, -1 ou +1. Concluiu-se que o produto também poderia ser apenas -1 ou +1, para que o valor médio do produto fosse
- X
No artigo de John Bell, de 1964, que inspirou os testes de Bell, supunha-se que os resultados A e B pudessem assumir apenas um dos dois valores, -1 ou +1. Concluiu-se que o produto também poderia ser apenas -1 ou +1, para que o valor médio do produto fosse
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde, por exemplo, N++ é o número de ocorrências simultâneas ("coincidências") do resultado +1 nos dois lados do experimento.
Em experimentos reais, porém, os detectores não são perfeitos e geralmente existem muitos resultados nulos. A correlação ainda pode ser estimada usando a soma das coincidências, já que claramente os zeros não contribuem para a média, mas na prática, em vez de dividir por Ntotal, tornou-se habitual dividir por
o número total de coincidências observadas. A legitimidade desse método baseia-se no pressuposto de que as coincidências observadas constituem uma amostra justa dos pares emitidos.
Seguindo as premissas realistas locais, como no artigo de Bell de 1964, a correlação quântica estimada convergirá após um número suficiente de ensaios para
- X
onde, por exemplo, N++ é o número de ocorrências simultâneas ("coincidências") do resultado +1 nos dois lados do experimento.
Em experimentos reais, porém, os detectores não são perfeitos e geralmente existem muitos resultados nulos. A correlação ainda pode ser estimada usando a soma das coincidências, já que claramente os zeros não contribuem para a média, mas na prática, em vez de dividir por Ntotal, tornou-se habitual dividir por
o número total de coincidências observadas. A legitimidade desse método baseia-se no pressuposto de que as coincidências observadas constituem uma amostra justa dos pares emitidos.
Seguindo as premissas realistas locais, como no artigo de Bell de 1964, a correlação quântica estimada convergirá após um número suficiente de ensaios para
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde aeb são configurações do detector e λ é a variável oculta, extraída de uma distribuição ρ (λ).
A correlação quântica é a principal estatística no CHSH e algumas das outras "desigualdades de Bell", cujos testes abrem caminho para a discriminação experimental entre a mecânica quântica, por um lado, e o realismo local ou a teoria das variáveis ocultas locais, por outro.[8][9]
Uma teoria da variável escondida local na interpretação da mecânica quântica é uma teoria das variáveis ocultas que tem a necessidade adicional de ser consistente com o realismo local.[1][2] Refere-se a todos os tipos de teoria que tentam explicar as características probabilísticas da mecânica quântica pelo mecanismo das variáveis inacessíveis subjacentes, com o requisito adicional do realismo local de que os eventos distantes sejam independentes, descartando instantaneamente (ou seja, mais rápido que a luz) interações entre eventos separados.
onde aeb são configurações do detector e λ é a variável oculta, extraída de uma distribuição ρ (λ).
A correlação quântica é a principal estatística no CHSH e algumas das outras "desigualdades de Bell", cujos testes abrem caminho para a discriminação experimental entre a mecânica quântica, por um lado, e o realismo local ou a teoria das variáveis ocultas locais, por outro.[8][9]
Uma teoria da variável escondida local na interpretação da mecânica quântica é uma teoria das variáveis ocultas que tem a necessidade adicional de ser consistente com o realismo local.[1][2] Refere-se a todos os tipos de teoria que tentam explicar as características probabilísticas da mecânica quântica pelo mecanismo das variáveis inacessíveis subjacentes, com o requisito adicional do realismo local de que os eventos distantes sejam independentes, descartando instantaneamente (ou seja, mais rápido que a luz) interações entre eventos separados.
Estados quânticos com um modelo de variável oculta local
Para os estados separáveis[3] de duas partículas, há um modelo variável oculto simples para quaisquer medições em duas partes. Surpreendentemente, também existem estados emaranhados para os quais todas as medidas de von Neumann podem ser descritas por um modelo de variável oculto. Esses estados estão embaraçados, mas não violam qualquer desigualdade de Bell. Os chamados estados de Werner são uma família de estados de um único parâmetro que são invariantes sob qualquer transformação do tipo onde é uma matriz unitária. Para dois qubits, eles são singletos ruidosos dados como
- (4)
- X
Para os estados separáveis[3] de duas partículas, há um modelo variável oculto simples para quaisquer medições em duas partes. Surpreendentemente, também existem estados emaranhados para os quais todas as medidas de von Neumann podem ser descritas por um modelo de variável oculto. Esses estados estão embaraçados, mas não violam qualquer desigualdade de Bell. Os chamados estados de Werner são uma família de estados de um único parâmetro que são invariantes sob qualquer transformação do tipo onde é uma matriz unitária. Para dois qubits, eles são singletos ruidosos dados como
- (4)
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- onde o singleto é definido como
- X
- onde o singleto é definido como
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
R. F. Werner mostrou que tais estados permitem um modelo de variável oculto para enquanto eles estão embaraçados se . O limite para modelos variáveis ocultos poderia ser melhorado até .[4] Modelos variáveis ocultos foram construídos para os estados Werner,[5] mesmo que as medições POVM sejam permitidas, não somente as medições de von Neumann.[6] Além dos sistemas bipartidos, também há resultados para o caso multipartido. Um modelo de variável oculta para todas as medidas de von Neumann nos partidos foi apresentado para um estado quântico de três qubits.[7]
R. F. Werner mostrou que tais estados permitem um modelo de variável oculto para enquanto eles estão embaraçados se . O limite para modelos variáveis ocultos poderia ser melhorado até .[4] Modelos variáveis ocultos foram construídos para os estados Werner,[5] mesmo que as medições POVM sejam permitidas, não somente as medições de von Neumann.[6] Além dos sistemas bipartidos, também há resultados para o caso multipartido. Um modelo de variável oculta para todas as medidas de von Neumann nos partidos foi apresentado para um estado quântico de três qubits.[7]
Comentários
Postar um comentário